
For Peer Review

 
 
 

Astrobiology Manuscript Central: http://mc.manuscriptcentral.com/astrobiology 
 

 
 

THE FAR FUTURE OF EXOPLANET DIRECT 

CHARACTERISATION 
 
 

Journal: Astrobiology 

Manuscript ID: draft 

Manuscript Type: Education Articles 

Date Submitted by the 
Author: 

 

Complete List of Authors: Lammer, Helmut; Austrian Academy of Sciences, Space Reseaerch 

Institute 

Keyword: 
Atmospheric Compositions, Bioastronomy, Biomarkers, 
Biosignatures, Exobiology 

  
 
 

 

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology



For Peer Review

1 

 

THE FAR FUTURE OF EXOPLANET  

DIRECT CHARACTERISATION 
 

 

Jean Schneider
1
,
 
Alain Léger

2
, Malcolm Fridlund

3
, Glenn J. White

4,5
, Carlos Eiroa

6
,  

Thomas Henning
7
, Tom Herbst

7
, Helmut Lammer

8
, René Liseau

9
,  

Francesco Paresce
10
,  Alan Penny

5,11
, Andreas Quirrenbach

12
, Huub Röttgering

13
, 

Franck Selsis
14
,Charles Beichman

15
, William Danchi

16
, Lisa Kaltenegger

17
, 

Jonathan Lunine
18
, Daphne Stam

19
, Giovanna Tinetti

20
 

 

1
Observatoire de Paris-Meudon, LUTH, Meudon, France 

2
IAS, Universite Paris-Sud, Orsay, Paris, France 

3
RSSD, ESA, ESTEC, Noordwijk, The Netherlands 

4
The Open University, Milton Keynes, England 

5
Space Science & Technology Department, CCLRC Rutherford Appleton Laboratory,  

Chilton, Didcot, Oxfordshire, England 
6
Universidad Autonoma de Madrid, Madrid, Spain 

7
Max-Planck Institut für Astronomie, Heidelberg, Germany 

8
Space Research Institute, Austrian Academy of Sciences, Graz, Austria 

9
Dept. of Radio and Space Science, Chalmers University of Technology,  

Onsala, Sweden 
10

INAF, Via del Parco Mellini 84, I-00136, Rome, Italy 
11

Royal Observatory Edinburgh, Blackford Hill, Scotland 
12

Landessternwarte, Heidelberg, Germany 
13

Leiden Observatory, Leiden, The Netherlands 
14

Bordeaux Observatory, Floirac, France 
15

NASA ExoPlanet Science Institute, California Inst. Of Technology/JPL, USA 
16

Goddard Space Flight Center, Greenbelt, MD, USA 
17

Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA 
18

Lunar and Planetary Laboratory, University of Arizona, USA 
19

SRON, Netherlands Institute for Space Research, Utrecht, The Netherlands 
20

Department of Physics and Astronomy, University College London, London, UK 
 

 

 

 

Corresponding Author:  

Jean Schneider  

E-mail: Jean.Schneider@obspm.fr 

Observatoire de Paris-Meudon,  

LUTH, Meudon, France 

 

 

 

Submitted to ASTROBIOLOGY 

Page 2 of 18

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 

 

THE FAR FUTURE OF EXOPLANET DIRECT CHARACTERISATION 

 

ABSTRACT 

In this outlook we describe what could be the next steps of the direct characterization of 

habitable exoplanets after first the medium and large mission projects and investigate the 

benefits of the spectroscopic and direct imaging approaches. We show that after third and 

fourth generation missions foreseeable for the next 100 years, we will face a very long 

era before being able to see directly the morphology of extrasolar organisms. 

 

Keywords:  Far future missions, direct imaging, high resolution spectroscopy, habitable 

exoplanets, exo-moons, surface features 

 

1. INVESTIGATING MORE EXOPLANETS OR HABITATS 

The future of exoplanetology is a priori bright since we already know that at least 30 % 

of main sequence stars have one or several super-Earth companions (Mayor 2008). It is 

likely that there will be two generations of space missions for the direct characterization 

of exoplanets in the next 15-20 years:  

 

� a first generation with a 1.5-2 m class coronagraph suited for giant planets and 

near-by super-Earths (e. g. Schneider et al. 2009)  

followed by:  
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� a second generation consisting of an interferometer (Cockel et al. 2009, Lawson et 

al. 2009), an external occulter (Glassman et al 2009), a large 8-m class 

coronagraph (visible – Shaklan and Levine 2008), a Fresnel Interferometric 

Imager (Koechlin et al 2009) or a 20-m segmented coronagraph (super-JWST) for 

the NIR (Lillie et al. 2001).  

 

In parallel there will likely be coronagraphic cameras on ground based Extremely Large 

Telescopes (like the EPICS camera - Kasper et al 2008). Here we try to anticipate what 

should come next and in particular a third generation mission and beyond. 

 

There are essentially two directions to go: investigating more planets and making a 

deeper characterization of exoplanets for which a candidate biomarker has been found 

and securing these biomarkers. We address these possibilities from the scientific 

objectives point of view rather than from the mission design point of view. We will limit 

ourselves to planets larger than 0.5 Earth radius although smaller planets may considered 

as habitats but may not evolve in Earth-type habitable planets (Lammer et al. 2009). 

 

More exoplanets at the same distance from the Earth than those detected by the two first 

generation missions do not require another type of mission. To detect more habitable 

exoplanets implies to observe more distant stars (hereafter “more distant” means further 

than 50 pc), or telluric-like moons of know giant planets in the habitable zone of their 

nearby star (hereafter “nearby” means closer than 20 pc). In both cases, what is required 

is an increase in angular resolution, either to separate distant planets from their parent star 
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or to separate a telluric companion from its parent giant planet. At 50 pc the baseline 

required to separate a planet at 1 AU from the star is B = 12 m at 600 nm
1
 (resp.   B = 200 

m at 10 micron). But for distant planets angular resolution is not sufficient. The collecting 

area must also scale as D
2 

where D is the distance of the planetary system. For a single 

aperture this condition is automatically fulfilled, for an interferometer it is an extra 

constraint. 

2. DEEPER CHARACTERIZATION OF MOST INTERESTING PLANETS 

 

2. 1. Spectroscopic and polarimetric approach 

One  can search for weaker lines (like CO2 around 9.3 and 10.5 micron in the thermal 

emission spectrum  - Fig. 1),  for more narrow lines and for the detailed spectral line 

shape thanks to higher spectral resolution. The latter case is well illustrated by the double 

peak of the O2 band at 760 nm and of O3 at 9.6 micron and the CO2 central peak at 15 

micron (Fig. 1). The CO2 central peak is an interesting diagnostic of temperature 

inversion in the planet atmosphere:  the central structure of the CO2 band tells that the 

upper atmosphere is warmer than the mid-altitude regions, indicating the presence of an 

absorbing gas in the former region
2
. Spectroscopy of giant planets with sufficient SNR 

and spectral resolution will also allow measuring their radial velocity (RV). This will 

incidentally leave to the determination of the mass of their parent star with an 

unprecedented accuracy and will allow detecting and measuring the mass and distance to 

the planet of moons by measuring the period and amplitude of the RV variation. Indeed, 

the amplitude of the planet RV variation for a moo at a distance aMoon  from its planet is 

                                            
1
We assume that planets must be at an angular distance larger than 2   λ/B to be observable by a coronagraph: 

2For a strongly absorbing gas, the intensity of the emission, at a given wavelength, is essentially that of a blackbody at the temperature 

of the atmosphere at the altitude where the optical depth τ from outside the background is unity. Consequently, the emission at the 
center of a band comes from regions at higher altitude than that in the band's wings, revealing the temperature of these regions. 
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K = 0.75(MMoon /MIo)(MPl / MJup  )
-1 

(aMoon / aIo )
-1/2  

 km s
-1

. The polarimetric approach will 

improve the knowledge of clouds, surface, rings etc (Stam 2008). 

 

2. 2. Direct imaging approach 

By progressively increasing the angular resolution, one will be able to: 

 

� Detect habitable moons of giant planets by separating the moon's image from its 

parent planet. To separate a moon distant by the Io-Jupiter distance (0.003 AU) 

from its parent giant planet at 10 AU requires a baseline B = 400 m at 600 nm 

(resp. B = 7 km at 10 micron). 

 

� Improve the transit spectroscopy of transiting planets (Schneider 2000). With a 

baseline B = 645 m at 600 nm on can isolate a pixel with a size = 0.1 RSun  on a 

star at 50 pc (until now there are only 5 transiting planets closer than 50 pc) and 

therefore improve the SNR by a factor 10.  Note that for that case no high contrast 

imaging is required; it would be an excellent application of the Stellar Imager 

project (Carpenter et al 2009). 

 

 

� Perform astrometric detection of moons. The astrometric measurement of the 

displacement of the planet position due to the pull by a moon offers another way 

to detect companions to planets. The required baseline is B = 150,000 

(D/10pc)(aMoon /aIo )
-1

(MPl /MJup )(Mmoon /MIo )
-1 

km at 600 nm.  
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� Constrain the planet radius for transiting planets. The accurate astrometric 

measurement of the star's centroid during the transit of planets will give a 

measurement of the planet radius independent from the photometry of transits. 

Indeed the position of the centroid varies during the transit with a linear amplitude 

RPl
3
/R*

2
.
 
Corresponding to a few microarsec for a Jupiter-sized planet at 10 pc. 

(Schneider 2000). 

 

 

� Direct measurement of the planet radius. The knowledge of the planet radius is 

important since this parameter controls the surface gravity and the Jeans escape of 

molecules. It can be inferred indirectly from the transit depth (for the few 

transiting planets) and constrained, with the help of atmosphere models, from the 

planet flux in reflected light and thermal emission. A direct measurement is 

obtained with an imager with an angular resolution of say 0.3 RPl.  For a 2REarth  

planet at 5 pc the required baseline at 600 nm is B = 20 km. 

 

The (temporarily) ultimate step will be the direct imaging of surface features (oceans, 

continents). In this configuration one can search for the direct detection of the ocean's 

glint (Williams and Gaidos 2008). This approach is particularly interesting for imaging 

forests and savannahs in order to investigate at a moderate spectral resolution the 

equivalent of the “red edge” of terrestrial vegetation at 725 nm. To have a, say, 10 by 10 

pixel image of a 2REarth  planet at 5 pc, a baseline B = 70 km is required at 600 nm. 
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These different configurations are summarized in Table 1 for an image at 600 nm. For an 

image at 10 micron, the required baseline is multiplied by 17. But for direct imaging the 

angular resolution is not sufficient. A sufficiently large collecting area is also necessary, 

putting an additional constraint on sparse aperture interferometers like the “hyper-

telescope” (Labeyrie 1996). To have the same SNR than for a single pixel image of a 

planet with a 2 m (resp. 8 m) single aperture, a total area equivalent to a single aperture of 

20 m, or 900 one meter apertures, (resp.  80 m, or 6400 one meter apertures) is required 

for have a 10 by 10 pixel image of a planet. 

 

In conclusion, with a few exceptions, large baselines will be required in the future to 

perform direct imaging and, in some cases, spectroscopic observations of exoplanets. 

Therefore one will inevitably be led to design large interferometers, even at short visible 

wavelength. An intermediate step on this pathway would be a mission like the Stellar 

Imager (Carpenter et al. 2009) where no additional high contrast imaging performances 

are required. 

 

3. OTHER STUDIES 

 

4. 1. Long term monitoring of most interesting planets 

A better knowledge of what is going on at the most interesting planets will be provided 

by long term monitoring programs from months to years.  This programs will lead to an 

improved knowledge of their diurnal rotation, random cloud coverage, seasons and 

volcanic events. A particular application is the detection of moons by mutual events 
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during a continuous photometric monitoring of the planet flux. These mutual events will 

reveal the presence of a moon by the shadow they project on the planet, by their 

disappearance in the planet shadow and by the primary and secondary transit with the 

parent planet (Cabrera and Schneider 2007). 

 

3. 2. “Techno-Signatures” 

Beyond standard biosignatures, another type of far from equilibrium signals can be seen 

as techno-signatures, i.e. spectral features not explained by complex organic chemistry, 

like laser emissions. In the present state of our knowledge one cannot eliminate them a 

priori, although we have no guiding lines to search for them.  For instance, in the present 

Earth atmosphere, CFC (Carbon Fluoro Compounds) gases are the result of technological 

chemical synthesis. Observed over interstellar distances, they would reveal to the 

observer the presence of a technology on our planet. The detection of their absorption 

spectrum on an exoplanet would require a spectral resolution of at least 100 around 10 

micron (See Fig. 2). Another approach would be to detect artificially produced light (e.g. 

Laser light). On Earth the present total energy production is about 40 TW. This 

represented one millionth of Sunlight energy reflected by the whole Earth. Transposed to 

an exoplanet it means that artificial light produced with the same power would be lost in 

the background noise of the stellar light reflected by the planet. This situation can be 

circumvented by observing the planet in the night-side only. But then the spatial 

resolution should be at least 0.3 RPl, corresponding to a baseline B of 70 km for a 2 REarth  

planet at 5 pc. To be detected with a SNR equivalent to the detection of the reflected 

stellar light by the whole planet with a 1.5 telescope, the collecting area required to detect 
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artificial light one million times fainter should be one million times larger, i.e. correspond 

to a single aperture with a diameter B = 1.5 km. Another type of techno-signature could 

go beyond the suggestion to detect artificial constructions by their transits on front of 

stars (Arnold 2005): this kind of detection would be improved by resolving the stellar 

disc. 

4. THE VERY LONG TERM PERSPECTIVE 

 

If we suppose that around 2020-2030 one has found a promising biomarker candidate on 

a nearby planet (like for instance around alpha Cen (Guedes et al. 2008). Such a 

discovery would trigger two kinds of projects: 

 

� Direct visualization of living organisms. Suppose that one wants to detect directly 

the shape of an organism having a size of 10 meter. A spatial resolution of 1 

meter would be required. Even on the putative closest exoplanet alpha Cen A/B b, 

the required baseline would be at 600 nm B = 600,000 km (almost the Sun 

radius). In reflected light the required collecting area to get 1 photon per year in 

reflected light is equivalent to a single aperture of B = 100 km. In addition, it this 

organism is moving with a speed of 1 cm s
-1

 it must be detected in less than 1000 

sec. To get a detection in 20 minutes with a SNR of 5, the collecting area must 

then correspond to an aperture B = 3 million km. All these numbers are 

unrealistic, unless laser trapped mirrors proposed by Labeyrie et al (2009) finally 

succeed (in their present conception there are fragilized by the solar wind). 
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� Exploring nearby stars. The possibility to explore in situ nearby stars at a speed 

of 0.3 c is often invoked (see for instance Bjoerk 2008). But at this kind of speed 

on faces the problem of shielding against cosmic rays damaging electronics and 

the interstellar dust threatening the whole mission.  According to Semyonov 

(2009), a water shell of 1 m in thickness would be a sufficient protection (but then 

the problem of accelerating up to 0.3 c is raised). As for the threat by interstellar 

dust, a 100 µ interstellar grain at 0.3 the speed of light has the same kinetic energy 

than a 100 tons body at 100 km/hour. No presently available technology can 

protect against such a threat without a spacecraft having itself a mass of hundreds 

of tons, in turn extremely difficult to accelerate up to 0.3 c. A way around is to 

have a travel velocity of only a few hundred km/sec like for the “The Project” 

project (Kilston 1999). But then the journey will take 10,000 years to go to alpha 

Cen.  

 

Whatever the approach, it seems impossible to have a direct visual contact with living 

organisms on the nearest exoplanet before many centuries, at least in the framework of 

foreseeable physical and technological concepts, and what physics will be in 1,000 years 

is not reasonable to anticipate. We are thus limited by a kind of conceptual or knowledge 

horizon. 

CONCLUSION 

For the one or two next centuries, one can reasonably anticipate that first high resolution 

spectroscopy and then high angular direct imaging will improve considerably our 

knowledge of nearby exoplanets and possible global biomarkers.  For the latter approach, 
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large interferometers will be inevitable. The highly desirable next step would be to have a 

direct visual access to the morphology of hypothetical life forms on these planets. 

Unfortunately technological obstacles will lead to a frustrating period of many centuries 

before one can realize this hope and we are perhaps as far from this epoch than Epicurus 

was far from seeing the first other worlds when, 23 centuries ago, he predicted the 

existence of these planets (Epicurus 300 BC). 
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FIGURES 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Spectra of the thermal emission of planets somewhat similar to the Earth but with 

different gases in their atmospheres. The spectral resolution is µλ/∆λ = 200 and signal to 

noise ratio ~ 100 σ. An additional non IR-active gas, e.g. N2 or O2, is assumed with a 

pressure of 1 bar. The thermal profile of the atmosphere is that of the Earth. All the 

spectral features present are real and show how precise are the fingerprints of gases at 

this spectral resolution (about 10 times larger than that of Darwin in the present version). 

In particular an estimate of the abundance of the gases is possible. The reader is invited to 

compare the cases of CO2 and CH4 at different concentrations (with respect to the 1 bar 

of inert gas). As explained in the text, the central structure of strong bands, e.g. CO2, are 

informative about the thermal structure of the atmosphere (warm stratosphere). 
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Figure 2 

 

 

 

 

 

 

 

Fig 2: Spectrum of CFC-113 (Le Bris et al. 2006) showing good agreement between the 

HITRAN model, and Pacific Norhwest National Laboratory and U. of Toronto 

measurements. 
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TABLES 

Objectives Required baseline at 600 nm 

Exo-moon image 400 m 

Spectroscopy of a planet transit image 645 m 

Astrometry of a planet transit image 40 km 

Direct measurement of planet size 20 km 

Image of continents/oceans 70 km 

 

Table 1: Baseline distances, necessary for exo-moon investigations to direct imaging of 

exoplanet surface features (after Williams and Gaidos 2008). 
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