
An algebraic approach to primality proving

In Section 1, I give a rather simple theorem that enables rapid primality proving for
numbers of the form n = kb3+b+1 with factorization fractions f = log(b)/ log(n−1)
as small as f = 2/7 ≈ 28.57%. Section 2 comments on this theorem. In Section 3,
I indicate how computer algebra was used to generate 11 polynomials that enable
proofs below 26% for primes of the form n = kb50+b13+1. After performing the usual
Pocklington tests to prove that every divisor of n is congruent to 1 modulo b13, the
extra cost is negligible, since it is merely linear in log(n), assuming FFT multiplica-
tion. At 10,000 decimal digits, the proofs are typically 1,000 times faster than would
be achieved by numerical use of a Lenstra–Lenstra–Lovász (LLL) method. The cer-
tificates are typically 1,000 times smaller, since they contain algebraic formulas that
replace the huge numerical expressions required for a certificate obtained with LLL.
Section 4 indicates the systematic methods by which I constructed these polynomi-
als and how they may be applied to primes of the special form n = kb4c−2 + bc + 1,
to get even closer to the 25% limit. Section 5 contains a summary and suggestions
for future work.

1 A theorem at 28.57% factorization

Let n = kb3 + b + 1, with integers k > 0 and b > 3k2. Suppose that for each prime
q|b we find an integer a with an−1 ≡ 1 (modn) and gcd(a(n−1)/q − 1, n) = 1.

Theorem (Broadhurst, 28.57%). With the above conditions, n is prime if and only
if (b + 1)2 − 4(kb − 1) is not a square and P (x) = k + x2 + x3 has no integer root.

Proof. If (b + 1)2 − 4(kb− 1) = s2, for integer s, then 4n = (b2 + b + 2)2 − (sb)2 and
n is composite. If P (−r) = 0, for integer r, then n = (rb + 1)(b(rb − 1)(r − 1) + 1)
is composite. Thus each of the two conditions is necessary. Now we show that
they are sufficient to prove that n is prime. By Pocklington’s theorem we know
that every divisor of n is congruent to 1 modulo b. Thus there exists a pair of
integers, y and z, such that n = (yb + 1)(zb + 1) and m ≥ y ≥ z ≥ 0, where
m = (n−1)/b. If n is prime, then z = 0 and y = m. Since yzb+y+z = m = kb2 +1,
there exists an integer t > 0 such that y + z = tb + 1 and yz = kb − t. Hence
(tb+1)2 −4(kb− t) = (y−z)2 is a square. Since it is not a square for t = 1, we have
t ≥ 2, y > b and z < k. Let d = zb + 1 be any divisor of n with 0 ≤ z < k. Then d



divides both P (−m) = −kn(n−2) and m−z = (n−d)/b. Hence d|P (−z). Assume
that P (x) has no integer root. Then |P (−z)/d| is a positive integer and hence
(zb)2 < d2 ≤ |P (−z)|2 ≤ 3(k2 + z4 + z6). Defining Q(x) = 3(k2 + x4 + x6) − (xb)2,
we conclude that Q(z) > 0. However, Q(k) ≤ 9k6 − k2b2 < 0, since b > 3k2, and
Q(1) = 3(k2 + 2) − b2 < b + 6 − b2 = (3 − b)(2 + b) < 0, since b > 3. Thus Q(x)
has a zero for 0 < x < 1 and a zero for x > k. By Descartes’ rule of signs [La

Géométrie, 1637], it can have no other zero at positive x. Hence there is no integer
z with 1 ≤ z < k and Q(z) > 0. Hence z = 0 and n is prime.

2 Comments on the theorem

Since k < (b/3)1/2, we may achieve a proof of primality for a factorization fraction
f = log(b)/ log(n − 1) arbitrarily close to f = 1/(3 + 1

2
) = 2/7 ≈ 28.57%.

Let f(c) = c/(4c− 2). Pocklington’s tests prove primality for a fraction f(1) = 1/2,
the square test of Brillhart, Lehmer and Selfridge (BLS) enables us to reach f(2) =
2/6 = 1/3. For primes of a general form, Konyagin and Pomerance showed how to
use a cubic, defined by a continued fraction, to reach f(3) = 3/10. Here, for primes
of a special form, we have already reached f(4) = 4/14 = 2/7 ≈ 28.57%, with a
much simpler cubic. After the Pocklington tests are completed, we need provide
only two small prime witnesses, p and q, showing that (b + 1)2 − 4(kb − 1) is not a
quadratic residue modulo p and that P (x) is not congruent to 0 modulo q for any
integer x ∈ [0, q − 1].

Note that there are many extensions of this method. For example, the form n =
kb3 + b − 1 needs two square tests, after the Lucas–Lehmer tests have established
that all factors are congruent to ±1 modulo b. But then the same cubic, P (x) =
k + x2 + x3, will complete the proof that there are no factors of the form d = zb± 1
with 0 < z < k.

Another extension is to consider the forms n = kb3 + lb±1, using a cubic polynomial
P (x) = k+ lx2+x3, again for either choice of sign. After the Pocklington and square
tests, the proof goes as above, if we demand that b2 > 3(1+k2l2+k4). (The theorem
used the condition b > 3k2 in the case l = 1.) In any case, it is clear that for large
b the operative criterion is b/k > max(k, |l|), since any small constants are easily
absorbed by a few additional square tests. Note that we can achieve a primality
proof with a factorization fraction f = 2/7 whenever l2 < k2 < b.
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By far the most interesting question, to my mind, is how to progress nearer to 25%
than f(4) = 2/7 for primes of a special form.

3 Algebraic polynomials to reach 25.99%

Let us pause to consider the three improvements already made on the Coppersmith–
Howgrave-Graham (CHG) method. First we used a square test to generate a BLS
upper limit for z. This was my suggestion, in late 2004. It makes a significant
difference in present work, since the upper limit of n/b3 on z is noticeably smaller
than n1/2/b. Secondly, we followed John Renze’s recent use of Descartes’ rule of signs
to replace the less efficient methods originally used in CHG proofs, as will shortly be
explained. Finally, we chose a special form for which there was a polynomial whose
L2-norm is far smaller than would be expected from a generic LLL upper bound.
Not only did we avoid lattice methods; we also greatly improved on the limits that
are expected for more general forms of primes. Together, these three features make
for a whole new ball game. This is the first inning.

Already, I have achieved a proof with a factorization fraction slightly below f(13) =
13/50 = 26%, at ten thousand decimal digits, using a form n = kb50 + b13 + 1, by
finding a series of efficient polynomials, in closed form, for arbitrary k and b. Here
is how it was done.

Suppose that we wish to prove the primality of n = kb4c−2 + bc + 1, with c > 1. We
assume that the Pocklington tests have established that every divisor of n is of the
form d = zbc +1. We may thus write n = (ybc +1)(zbc +1) with y ≥ z ≥ 0. Our aim
is to show that z = 0 is the only way of doing this. Since yzbc + y + z = kb3c−2 + 1,
there exits an integer t > 0 such that y + z = tbc + 1 and yz = kb2c−2 − t. Thus
(tbc + 1)2 − 4(kb2c−2 − t) is a square. We test that this is not a square for t = 1 and
hence conclude that t ≥ 2. Thus y > bc and z < kbc−2.

Then (by cunning methods, shortly to be revealed) we find a polynomial Ph,u(x) with
degree h − 1, integer coefficients, Ph,u(0) 6= 0, and the CHG property that for each

i ∈ [0, u−1] its ith derivative, P
(i)
h,u(x), satisfies P

(i)
h,u(b

−c)/i! = 0 mod nu−i. Note that
b is coprime to n and hence has an inverse modulo any power of n. Note also that i!
is cancelled by the ith derviative, i!

(

j
i

)

xj−i, of xj for each term in Ph,u(x) =
∑

j cjx
j .

It follows that for every divisor d = zbc +1 of n we have du|Ph,u(−z). To prove this,
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we simply make the Taylor expansion

Ph,u(−z) =
h−1
∑

i=0

(−z − b−c)iP
(i)
h,u(b

−c)/i!

and observe that −z − b−c = −d/bc and that b is coprime to d.

We define Qh,u(x) = h
∑

j(cjx
j)2 − (xbc)2u, check that Ph,u(x) has no integer root

and conclude that Qh,u(z) > 0. To prove this, we note that zbc < d, du ≤ |Ph,u(−z)|
and |Ph,u(−z)|2 ≤ h

∑

j(cjz
j)2.

Next we find (if we are able) two real numbers X and Y , with 0 < X < Y , Qh,u(X) <
0 and Qh,u(Y ) < 0. It follows from Descartes’ rule of signs that n has no factor zbc+1
with z ∈ [X, Y ]. This is a significant improvement on earlier CHG methods, which
relied on an unnecessarily strong condition, namely h

∑

j(cjY
j)2 < (Xbc)2u, yielding

significantly smaller ranges than those covered in this work.

To complete the proof of primality we need a chain of such polynomials to exhaust
the range z ∈ [1, kbc−2] and hence prove that z = 0 and n is prime. I shall describe
a chain of 11 polynomials that I found for the case c = 13 and b ≫ k, so as to
dip below 26%, with no need to know the numerical values of b and k until the
algebraic construction is completed and only a few trivial numerical tests remain for
any particular primality proof. These polynomials turn out to be special cases of
the first 11 polynomials of a master sequence that allow one to progress even closer
to the 25% barrier than the target of this section, which is 26%.

For proofs of primes of the form n = kb50 + b13 + 1, I begin, for small z, with

P4,1(x) = kb11 + x2 + x3

which obviously has u = 1, since P4,1(b
−13) = b−39n. To each polynomial in the

chain, I associate a logarithmic range log(z)/ log(b) ∈ [n1, n2] in which it is useful
for proving the absence of factors, provided that the polynomial has no integer roots
and that b ≫ k. (I shall arrange for these ranges to overlap, so that the neglect of k
is benign and is remedied in the proving code.) I indicate the range of a polynomial
by the index pair (n1, n2). In this case the indices are I4,1 = (−2, 13/2), which means
that we eliminate factors zb13 + 1 with z running from 1 to O(b13/2). To determine
the indices, I study the polynomial Qh,u(x) = h

∑

j(cjx
j)2 − (xb13)2u, where cj is

the coefficient of xj in Ph,u(x), and determine, logarithmically, its two zeros at real
positive x, for asymptotic b. Recall that Descartes tells us that there are no more
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than two such zeros. I have arranged that there shall be precisely two. The easiest
way to find them is to assume, in the first instance, that n1 and n2 are determined
by c0 and ch−1, respectively, and then to check that the other coefficients of the
polynomial do not modify the conclusions. (The skill is to find polynomials which
make both of the final checks work.) In this case, with u = 1, we have c0 = O(b11)
and hence 11 = n1 + 13, while c3 = O(b0) gives 3n2 = n2 + 13. Clearly c2 = 1 does
not modify the conclusion that I4,1 = (−2, 13/2).

For the next step, I use

P6,2(x) = k2b37 + k(3b13x − 1)(x + 1) + b2x3(x + 1)2

with degree h−1 = 5 and index u = 2, as may be verified by computing P6,2(b
−13) =

b−63n2 and P
(1)
6,2 (b−13) = (3b−37+5b−50)n. Writing the weights of the coefficients cj as

the vector V6,2 = [37, 13, 13, 2, 2, 2], for j = 0 . . . 5, our first guess for the range comes
from solving 37 = 2(n1 + 13) and 5n2 + 2 = 2(n2 + 13), which suggest that I6,2 =
(11/2, 8). To verify that this is correct we must add the corresponding multiples
of the vector N6 = [0, 1, 2, 3, 4, 5]. For example V6,2 + 8N6 = [37, 21, 29, 26, 34, 42]
has its largest component at j = 5, as we assumed, to determine n2 = 8, while
2V6,2 + 11N6 = [74, 37, 48, 37, 48, 59] has its largest component at j = 0, as we
assumed, to determine n1 = 11/2. Conveniently, the beginning of the range I6,2 =
(11/2, 8) overlaps with the end of the previous range I4,1 = (−2, 13/2), allowing
scope for modest values of k, which was ignored in our logarithmic calculations.

Next comes

P8,3(x) = k3b61 + k2b37x(3x + 4) + kb26x3(x + 1) + k2b24(x − 1)

+ kb13x2(x + 1)(5x + 3) − k2b11 + b2x4(x + 1)3 − kx(x + 1)(2x + 1)

with index u = 3 verified by computing P8,3(b
−13) = b−89n3,

P
(1)
8,3 (b−13) =

(

4b−63 + 7b−76
)

n2, P
(2)
8,3 (b−13)/2 = 3b−63n

(

n + (2b13 + 3)(b13 + 2)
)

.

The weight vector V8,3 = [61, 37, 37, 26, 26, 2, 2, 2] suggests that 61 = 3(n1 + 13) and
7n2 + 2 = 3(n2 + 13). Then the checks

4V8,3 + 37N8 = [244, 185, 222, 215, 252, 193, 230, 267],

3V8,3 + 22N8 = [183, 133, 155, 144, 166, 116, 138, 160],
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with N8 = [0, 1, 2, 3, 4, 5, 6, 7], confirm our first guess that I8,3 = (22/3, 37/4). Con-
veniently, this has an overlap with I6,2 = (11/2, 8).

I forbear from printing further polynomials; they will be available in Pari-GP code
when the certificate generator is written. Here I characterize the rest of my algebraic
path to 25.99% in terms of the ranges covered and the weight vectors that accomplish
this covering.

I found a 9th-order polynomial, P10,4(x), proven to have u = 4, with

V10,4 = [87, 63, 63, 52, 39, 28, 28, 4, 4, 4], I10,4 = (35/4, 48/5)

and an 11th-order polynomial, P12,5(x), proven to have u = 5, with

V12,5 = [111, 87, 87, 76, 63, 52, 52, 28, 28, 4, 4, 4], I12,5 = (46/5, 61/6).

A pattern is becoming clear. The previous 5 examples have weight vectors that end
with small multiples of 2 and taper to these values in decrements of 0, 11, 13, or
11 + 13 = 24. Moreover I2u+2,u is of the form (n1(u), n2(u)), where un1(u) gives the
sequence −2, 11, 22, 35, 46, with alternating steps of 13 and 11, while (u + 1)n2(u)
gives 13, 24, 37, 48, 61, with alternating steps of 11 and 13. The ubiquity of 11 and
13 results from the fact that the building blocks of the target are K = kb11 and
B = b13, giving n = KB3 +B +1 = kb50 + b13 +1, chosen so as to achieve very rapid
proofs with factorization fraction f(13) = 13/(3 × 13 + 11) = 26%. (It is one of
those happy accidents of experimental mathematics that the quest for 26% led me
to the twin primes c = 13 and c − 2 = 11, making it very easy to spot the pattern
in this particular chain and then to generalize it.)

Studying the pattern thus far, one spots a game of leap-frog, by writing out the first
5 ranges numerically:

(−2.00, 6.50), (5.50, 8.00), (7.33, 9.25), (8.75, 9.60), (9.20, 10.17).

Note that I10,4 ≈ (8.75, 9.60) is redundant, since I8,3 overlaps I12,5, assuming that b
is sufficiently large. (It might, however, be a good idea to leave P10,4 in the code, as
an option, in case the powers of k eat away at the overlap, for modest values of b.)

Next comes a polynomial P14,6(x) with degree 13 and weight vector

V14,6 = [137, 113, 113, 102, 89, 78, 65, 54, 54, 30, 30, 6, 6, 6],
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and range I14,6 = (59/6, 72/7) ≈ (9.83, 10.29). Now let us remind ourselves of how
far we must go. The target zone of 26% requires us to reach z = O(b11). It might
appear that progress is becoming slow, with n2(6) − n2(5) ≈ 10.29 − 10.17 = 0.12.
However, the next member of the series has

V16,7 = [161, 137, 137, 126, 113, 102, 89, 78, 78, 54, 54, 30, 30, 6, 6, 6],

with I16,7 = (70/7, 85/8) ≈ (10.00, 10.63). In general, I2u+2,u = (n1(u), n2(u)) with

n1(2j) =
24j − 13

2j
, n2(2j) =

24j

2j + 1
, n1(2j + 1) =

24j − 2

2j + 1
, n2(2j + 1) =

24j + 13

2j + 2
.

For u = 6 . . . 10 the ranges I2u+2,u form the sequence

(9.83, 10.29), (10.00, 10.63), (10.38, 10.67), (10.44, 10.90), (10.70, 10.91)

with the larger of the indices showing a tendency to freeze at even values of u. For
example, n2(10) = 120/11 ≈ 10.91 is scarcely better than n2(9) = 109/10 = 10.90.
But we do not care about that, since we can leap-frog even values of u > 2, using
the 6 polynomials with u = 1, 2, 3, 5, 7, 9 to reach z = O(b109/10).

Finally, I obtained a 23rd order polynomial P24,11(x) with weight vector

V24,11 = [261, 237, 237, 226, 213, 202, 189, 178, 165, 154, 141, 130,

130, 106, 106, 82, 82, 58, 58, 34, 34, 10, 10, 10]

and range I24,11 = (118/11, 133/12) ≈ (10.73, 11.08), as may be confirmed by com-
puting the vectors

12V24,11 + 133N24 = [3132, 2977, 3110, 3111, 3088, 3089, 3066, 3067,

3044, 3045, 3022, 3023, 3156, 3001, 3134, 2979,

3112, 2957, 3090, 2935, 3068, 2913, 3046, 3179],

11V24,11 + 118N24 = [2871, 2725, 2843, 2840, 2815, 2812, 2787, 2784,

2759, 2756, 2731, 2728, 2846, 2700, 2818, 2672,

2790, 2644, 2762, 2616, 2734, 2588, 2706, 2824]

where N24 has i−1 as its ith component. Note carefully that the last component of
the first test vector is larger than all the others, while in the second test vector the
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first component is the largest. (It is amusing to note how flat the two test vectors
are. This is my algebraic version of LLL, in logarithmic form.)

Since n2(11) = 133/12 = 11 + 1
12

, we may now prove primality for a probable
prime n = kb50 + b13 + 1, with b ≫ k, using 7 polynomials, namely those with
u = 1, 2, 3, 5, 7, 9, 11, whose ranges

(−2, 13/2), (11/2, 8), (22/3, 37/4), (46/5, 61/6),

(10, 85/8), (94/9, 109/10), (118/11, 133/12)

overlap and exhaust all possible factors zb13 + 1 with 0 < z < kb11.

This chain enables one to prove primality in a few minutes, after the Pocklington
tests are completed. We simply find 8 small primes that certify the square test and
the absence of integer roots of the 7 polynomials, with degrees h − 1 = 2u + 1 =
3, 5, 7, 11, 15, 19, 23. Then the proof is completed by checking 14 inequalities, at
the overlapping endpoints for which Descartes’ rule of signs exhausts factors. The
certificating code occupies a few kilobytes.

Such efficiency is to be contrasted with numerical methods, where more than 80
polynomials might be required, if the LLL bounds were truly indicative of their
ranges of utility. When I gave this problem to my numerical client/server CHG
set-up, with a set of 82 polynomials selected according to their LLL bounds, and
no appeal to Descartes’ sign rule, it took 75 CPUhours to prove a single prime with
10,000 digits and generate a 26 MB certificate. By algebraic means, I have now
increased the speed by a factor of about 1,000 and decreased the storage by a factor
of about 1,000.

Most importantly, the polynomials developed for this case are the first 11 of a truly
generic chain, whose continuation allows one to get even closer to the 25% barrier,
as I shall now explain.

4 The master chain

Based on the above example, I found a construction for a sequence of master poly-
nomials, Fu(y, B, C), that solve the problem of approaching 25%. To prove a prime
of the form n = kb4c−2 + bc + 1, with an integer c > 1, one may use the chain

P2u+2,u(x) = b2[u/2] Fu(xbc, bc, kb4c−2)

b2uc+c
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where [u/2] is the integer part of u/2. (With c = 13 we shall recover the results of
the previous section.) The chain begins with

F1(y, B, C) = y2(y + B) + C,

F2(y, B, C) = y3(y + B)2 + g1(y, B, 2)C + C2,

F3(y, B, C) = y4(y + B)3 + g1(y, B, 3)y(y + B)C + h1(y, B, 3)C2 + C3,

g1(y, B, u) = (3y − 1)(y + B) + (u − 2)Gy,

h1(y, B, u) = g1(y, B, 2) + (u − 2)G, G ≡ By + 2y − 1.

The general form is

Fu(y, B, C) = y(y2 + By)u + Gu(y, B, C) + Hu(y, B, C) + Cu,

Gu(y, B, C) =
[u/2]
∑

r=1

gr(y, B, u)(y2 + By)u−2rCr,

Hu(y, B, C) =
[(u−1)/2]
∑

r=1

hr(y, B, u)Cu−r,

where gr and hr are polynomials in y, with degree 2r, and in B, with degree r. (It
turns out that they are also polynomials in u, with degree r, which is why I include
u as an argument, rather than a subscript.)

Denoting the coefficients of ys in gr and hr by gr,s(B, u) and hr,s(B, u), respectively,
I specify the leading coefficients of y2r by

gr,2r(B, u) = B(u − 2r) + 2(u − r) + 1, hr,2r(B, u) = 2r + 1

and, for s < 2r, I further require that gr,s and hr,s are polynomials in B with degrees
dr,s subject to the powerful constraint

dr,s ≤ min(r, s + 1, 2r − s + 1)

which drastically limits the non-zero Taylor coefficients. I further specify that

gr(0, 0, u) = 0, hr(0, 0, u) = (−1)r

(

u − r − 1

r

)

.

Finally, I require that the limit

lim
λ→0

Fu(1 + λ, B, nλ − 1 − B)

λu
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exists, for arbitrary B and n. For each u ≤ 11, I found that there is a unique solution
to this master CHG condition allowed by the constraints on the Taylor coefficients
given above. Moreover, I found that the coefficients of this unique solution are
integers.

It is wonderfully convenient to have a master CHG condition that defines the poly-
nomials, since then the problem of determining Fu reduces to linear algebra with a
matrix of integers that specify the contributions of undetermined Taylor coefficients
to partial derivatives that vanish in the limit λ → 0. By conjecture, there is a
unique set of integers that solves the master CHG condition. Hence we may find
them, modulo a small set of primes, using the matsolvemod routine of Pari-GP and
then construct the integers using the Chinese remainder theorem.

From the solutions with u ≤ 11, I infer that both gr(y, B, u) and hr(y, B, u) are
polynomials in Gu of degree r and that the rth derivative with respect to u is Gry
in the case of gr and Gr in the case of hr. Hence we need only go up to u = 3r−1 to
determine gr and hr for all u. From the very simple matrices with u ≤ 5, I obtained

g2(y, B, u) = (u − 2)(u − 3)yG2/2 + (u − 4)HG + y(y + B)I,

h2(y, B, u) = (u − 3)(u − 4)G2/2 + (u − 4)(4y − 1)(y + B)G + g2(y, B, 4),

H ≡ (3y − 1)(y + B) + y(y − 1)2,

I ≡ (7y − 2)(y + B) − 2(y − 1)2.

Similarly, the results for u ≤ 8 determine g3 and h3, while those for u ≤ 11 determine
g4 and h4. In all cases, gr(y, B, 2r) = hr(y, B, 2r). Thus the code that records
the first 11 polynomials contains only the 8 master formulas for gr(y, B, u) and
hr(y, B, u) with r ≤ 4 and the 3 specific formulas for g5(y, B, 10), g5(y, B, 11) and
h5(y, B, 11). It is encouraging to note that the largest coefficient in these 3 specific
cases is merely 7355. Had I resorted to matsolvemod these particular solutions would
have been very easy to find. In fact, I used far more laborious methods, to establish
that I had obtained the unique solutions with the weight vectors characterized below.

For every divisor d = zbc +1 of n = kb4c−2 + bc +1, with c > 1, we have ensured, via
the master CHG condition, that du|P2u+2,u(−z). Now we need to look at the ranges
which these polynomials cover. The weight vectors of P2u+2,u(x) have the pattern

V4,1 = [c − 2, 0, 0, 0],

V6,2 = [3c − 2, c, c, 2, 2, 2],

V8,3 = [5c − 4, 3c − 2, 3c − 2, 2c, 2c, 2, 2, 2],
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V10,4 = [7c − 4, 5c − 2, 5c − 2, 4c, 3c, 2c + 2, 2c + 2, 4, 4, 4],

V12,5 = [9c − 6, 7c − 4, 7c − 4, 6c − 2, 5c − 2, 4c, 4c, 2c + 2, 2c + 2, 4, 4, 4],

V14,6 = [11c − 6, 9c − 4, 9c − 4, 8c − 2, 7c − 2, 6c,

5c, 4c + 2, 4c + 2, 2c + 4, 2c + 4, 6, 6, 6],

V16,7 = [13c − 8, 11c − 6, 11c − 6, 10c − 4, 9c − 4, 8c − 2, 7c − 2, 6c,

6c, 4c + 2, 4c + 2, 2c + 4, 2c + 4, 6, 6, 6].

Observe that V2u+2,u always contains the weight (u − 1)c, which occurs twice when
u is odd. The weight vector begins with (2u − 1)c − 2[(u + 1)/2] and then the
weight decreases with special decrements of 2c−2 and 0, initially, followed by regular
alternating decrements of c−2 and c, as long as the result does not fall below (u−1)c.
The weight vector ends with 2[u/2] and then, moving to the left, the weight increases
with the special increment 0, initially, followed by regular alternating increments of
0 and 2c − 2, as long as the result does not rise above (u − 1)c. Note that the
difference in weight between the first and last components is u(c − 2) + (u − 1)c,
whatever the parity of u.

When b ≫ k, the algebraic polynomial P2u+2,u(x) is a good candidate for exhausting
factors of the form zbc + 1 with log(z)/ log(b) ∈ [n1(u), n2(u)], where

n1(u) =
(u − 1)c − 2[(u + 1)/2]

u
, n2(u) =

uc − 2[u/2]

u + 1

have the desired overlap property that n2(u)− n1(u + 1) = 2/(u + 1) > 0. However
we must also check that the indices derived from the first and last components of
the tapering weight vector are not modified by any of the intermediates weights. If
Nh denotes the h-component vector whose ith component is i − 1, the range tests
come from computing the vectors

Ru = (u + 1)(V2u+2,u + n2(u)N2u+2), Lu = u(V2u+2,u + n1(u)N2u+2)

whose components are integers. The range is correct if the last component of Ru

is its largest and the first component of Lu is its smallest. (Note that we did these
tests for the case c = 13 and u = 11 at the final stage of the concrete analysis in the
previous section.) Both tests succeed for c > 1 and 2(c + [c/2]) + 1 ≥ u ≥ 1, with
an upper limit on u that is larger than the value required for the primality tests.

Finally, observe that the upper limit imposed by the square test is z < kbc−2.
Hence, with b ≫ k, we exhaust the range as soon as n2(u) > c − 2, which occurs
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when 2[(u + 1)/2] > c− 2, i.e. for the first odd value of u greater than c− 3. (With
c = 13, this is indeed u = 11.) The odd values of c are hence more interesting,
since they give proofs at a smaller factorization percentage for a given limit on the
number of polynomials that we have the patience to generate.

Suppose that we have the master polynomials up to u = 2j + 1 and set c = u + 2.
Then we can achieve a primality proof with a factorization fraction less than f(c) =
c/(4c−2) = (2j +3)/(8j +10). To estimate how far below f(c) we may get, we look
at the last Cartesian inequality, and require that b2[u/2]zh−1 ≪ (zbc)u, at z = kbc−2.
Setting u = 2j +1, h = 2u+2, and c = u+2, we see that this becomes the condition

b2j(kb2j+1)4j+3 ≪ (kb4j+4)2j+1

which conveniently simplifies to k2j+2 ≪ b. Provided that everything else works out
(as can be checked in a concrete numerical case) we appear to be able to get slightly
below f(2j + 3), approaching a fraction

F (j) =
2j + 3

8j + 10 + 1
2j+2

when k gets close to the danger zone with k2j+2 = O(b). It is amusing to note that
F (0) = 3/(10+ 1

2
) = 2/7 = f(4), which is achievable by use of the theorem. However

one chooses to do it, 28.57% seems to be the limit using only the master cubic.

In the example of the previous section, I chose j = 5, having to hand the first
2j + 1 = 11 master polynomials. This made for comfortable proofs slightly below
f(13) = 13/50 = 26%. In fact we might push our luck and aim to get close to F (5) =
13/(50+ 1

12
) ≈ 25.96%. At the cost of solving the linear algebra for F13(y, B, C), we

can get comfortably to f(15) = 15/58 ≈ 25.86% and with more boldness close to
F (6) = 15/(58+ 1

14
) ≈ 25.83%. Note that we do not need the master polynomial at

u = 12, which we may easily leap-frog, just as we avoided the even values of u > 2
in the example at c = 13. However the master polynomials with u = 4, 6, 8, 10 were
decidedly useful in determining the polynomial dependence in u of large classes of
Taylor coefficients, so as to reduce the size of the linear algebra problem at u > 10.

5 Summary and comments

For u ≤ 11, I have constructed master polynomials, Fu(y, B, C), with integer-valued
Taylor coefficients, limited by simple rules. By specifying a few of these coefficients,
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I constructed the rest from the master CHG condition that the limit

lim
λ→0

Fu(1 + λ, B, nλ − 1 − B)

λu

exists, for arbitrary B and n. For each u ≤ 11, there was a unique solution to
this condition. I conjecture that, with the system of constraints that I have given,
this will continue to be the case at higher degrees and hence that the process may
be continued by efficient use of the matsolvemod and chinese routines of Pari-GP,
without further recourse to the laborious methods that I used to ensure uniqueness
for u ≤ 11.

The first polynomial, F1(y, B, C) = y2(y + B) + C, enables one to achieve proofs
at 28.57% factorization, as shown by the theorem. Using the polynomials with
u = 1, 2, 3, 5, 7, 9, 11, I achieved fast compact proofs below 26% at 10,000 digits.
Scaling this up to 100,000 digits seems to be a routine matter: the cost of finding
a target goes as the cube of the number of digits; the cost of the BLS tests goes as
its square; the cost of my final tests is merely linear in the number of digits, using
FFT multiplication. At 10,000 digits, I estimate that I have speeded up the CHG
method by a factor of 1,000, for primes of a special form with 26% factorization.
The size of a certificate is reduced by a factor of about 1,000, in comparison with
the output from numerical LLL methods.

In the course of obtaining the first 11 master polynomials, I found rules for the
dependence of Taylor coefficients on u that indicate to me the possibility of a re-
cursive algorithm. Thus far, I achieved this only partially, yet very usefully, since
large classes of Taylor coefficients for u > 11 are already determined algebraically
by those found for u ≤ 11. Ultimately, one might hope that someone will find a
closed expression for the whole family of three-variable polynomials.

Finally, I remark on the special form of prime chosen to illustrate the method,
namely n = kb4c−2 + bc + 1, which enables one to get below a factorization fraction
f(c) = c/(4c−2) with b ≫ k and u values up to smallest positive odd integer greater
than c − 3. This specific form was chosen for pedagogical purposes. In fact, the
master polynomials Fu(y, B, C) are applicable to a wider class of problem. Their
definition is Taylored (if I may use the pun) to produce a nicely tapering weight
vector for primes of the form n = C + B ± 1 where gcd(B4, C) is especially large.
I indicated in Section 2 how to extend the proof method at 28.57% to forms such
as n = kb3 + lb± 1, using essentially the same cubic polynomial. Similar extensions
are possible at lower factorization percentages. As already indicated, the examples
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given here are merely the first inning of a whole new ball game.

Of one thing one may be sure: there is absolutely nothing in this work that indi-
cates any hope of actually reaching 25%, when the rules of the game start with the
theorems of Pocklington or Morrison. However, I do find it rewarding that anyone
who chooses to try may get, with relative ease, below 26%, for primes of special
forms, now that I have completed the hard work of finding an algebraic definition
of the master polynomials.

In conclusion, I am deeply grateful to John Renze, whose recognition of the power
of Descartes’ rule of signs underpins the utility of the master polynomials which I
have here defined and partially elucidated. It now seems to me that there were two
very significant dates in the 17th century for would-be primality provers. Everyone
knows about Fermat’s little theorem, from his letter to Frenicle de Bessy in 1640.
I find it remarkable that Descartes’ La Géométrie of 1637 should provide another
vital clue. Relations between Fermat and Descartes were fraught with difficulty.
How pleasant, therefore, to see them work here in harmony, with Fermat providing
the vital input to the BLS method of primality proving and now Descartes providing
a welcomed improvement to the CHG method.

David Broadhurst, February 17, 2006
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