Effect of microhydration on the resonances of pyridine and thymine

Agnieszka Sierdazka and Jimena D. Gorfinkiel

School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, U.K.

Introduction

Electron scattering from biological molecules has been investigated for at least a couple of decades [1]. One of the most significant applications is in the study of biological radiation damage, where electron-induced dissociative electron attachment (DEA) can lead to DNA strand breaks [2]. DEA is initiated by the formation of a resonance or transient negative ion. Work until recently has mainly concentrated on gas phase/isolated molecules. However, biological radiation damage occurs in a condensed environment where all molecules with a biological function are surrounded other particles, mainly by water.

Small clusters are being investigated to understand the effect of hydration on electron induced molecular processes.

Discussion and Conclusions

Direct and indirect effects

'Natural' colours symbolise molecule in its isolated, ground state, equilibrium geometry; the blue colour indicates molecule in the optimized geometry of the cluster.

- Microhydration effects can be understood in terms of an indirect (change) to the molecule's geometry) and direct (actual effect of the hydrogen-bonding) contribution
- Calculations confirm the findings of Freitas et al. [5]:
 - ▷ water acting as hydrogen donor stabilizes resonance, water acting as acceptor destablizes it

Pyridine- $(H_2O)_n$

- Direct effects stronger than (destabilizing) indirect effects
- **Stabilization** of shape resonances in all Pyridine- $(H_2O)_n$ clusters.
- Size of shift linked to dipole moment of cluster and connected with energy of orbital to which the electron binds

- effect is approximately additive
- \blacktriangleright Effect of each H₂O molecule depends weakly on the binding site
- Effect is different for different resonances in the system
- ► Full effect of polarization still needs to be understood

Thymine- $(H_2O)_n$

ABCDE geometry from *Smyth et al.* [6]; ACDEF geometry

Thy- $(H_2O)_n$

Effect of additional waters is approximately additive

Jniversity

Indirect effect is small and similar for all clusters

Lowest shape resonance is more stabilized than second one; explained by orbital density

Core-excited resonances are all stabilized

$1\pi^*$ and $2\pi^*$ orbitals of pyridine.

Calculations

We have used the R-matrix method [3] as implemented in the UKRmol+ suite [4]. The method is based on the separation of space into an inner and an outer region, divided by a sphere of radius *a*. In the inner region, exchange and correlation are taken into account.

- dela 005 dela -emit 400 Thy G1 — Thy G2 300 200 100 3 2 Energy [eV]
- ► Effect is different for different resonances
- ► For some clusters we see destabilizations.

Letters (A, B, AE...) indicate attachment position of water molecule. Thy G1: thymine in its equilibrium geometry. Thy G2 and Thy G3, thymine in the geometry it has in the ABCDE and ACDEF clusters respectively.

- ► DEA calculations [6] based on resonance stabilization predict an increase in H loss for Thy- $(H_2O)_5$
- Experiments for microhydrated uracil /thymine [7] show complete quenching of H loss
- Size of shift of two lowest π^* resonances is similar to the change in the HF orbital energies

$\mathbf{Q}(E) = i\hbar \mathbf{S} \frac{d\mathbf{S}}{dE}$

where the S-matrices are obtained from the R-matrix calculations. All calculations have been performed using a cc-PVDZ basis. Unless otherwise stated, the calculations are performed at the Static-Exchange (SE) level with partial waves I < 7.

References

[1] J. D. Gorfinkiel and S. Ptasińska, J. Phys. B, submitted. [2] B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche 2000 Science 287 1658 [3] J. Tennyson 2010 Phys. Rep. 491 26 [4] http://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in/, /ukrmol-out/ [5] T. C. Freitas *et al* 2013 *J. Chem. Phys.* **138** 174307 [6] M. Smyth, J. Kohanoff, and I. Fabrikant 2014 J. Chem. Phys. 140 184313 [7] J. Kočišek, A. Pysanenko, M. Fárník, and J. Fedor 2016 J. Phys. Chem. Lett. 7 3401

- \blacktriangleright The σ^* orbitals that should describe the σ^* resonances involved in H loss change significantly: they no longer describe electronic density around the N_1 or N_3 bonds
- The quenching observed experimentally could be linked to significant modification of the σ^* rather than π^* resonances

Resonances stabilized for both clusters but by different amounts

- \blacktriangleright Larget resonances shift < 0.7 eV
- Indirect effect different for different clusters but similar for both resonances
- Direct effect destabilizes first resonances and stabilizes second
- Both direct and indirect effects are stronger in ACDEF cluster than in ABCDE

D.O.I: 10.1063/1.4993941 and 10.1063/1.4993946

Acknowledgements: This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk)