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Introduction

Electron scattering from biological molecules has been investigated for at
least a couple of decades [1]. One of the most significant applications is in
the study of biological radiation damage, where electron-induced
dissociative electron attachment (DEA) can lead to DNA strand breaks [2].
DEA is initiated by the formation of a resonance or transient negative ion.
Work until recently has mainly concentrated on gas phase/isolated
molecules. However, biological radiation damage occurs in a condensed
environment where all molecules with a biological function are surrounded
other particles, mainly by water.
Small clusters are being investigated to understand the effect of hydration
on electron induced molecular processes.
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SE CC
I Direct effects stronger than (destabilizing) indirect effects
I Stabilization of shape resonances in all Pyridine-(H2O)n clusters.
I Size of shift linked to dipole moment of cluster and connected with energy

of orbital to which the electron binds

I Lowest shape resonance is more
stabilized than second one; explained by
orbital density

I Core-excited resonances are all stabilized
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1π∗ and 2π∗ orbitals of pyridine.

Calculations

We have used the R-matrix method [3] as
implemented in the UKRmol+ suite [4].
The method is based on the separation of
space into an inner and an outer region,
divided by a sphere of radius a. In the inner
region, exchange and correlation are taken
into account.
The R-matrix is built at the boundary between the two regions.
In the outer region, a set of coupled differential equations is solved, using
the R-matrix as boundary condition. Matching its solutions to the
asymptotic form of the radial wavefunction describing the free electron,
K-matrices are obtained and, from them, the relevant observables [3].
The resonances are located investigating the largest eigenvalue of the
time-delay:

Q(E) = i~S
dS

dE
where the S-matrices are obtained from the R-matrix calculations.
All calculations have been performed using a cc-PVDZ basis. Unless
otherwise stated, the calculations are performed at the Static-Exchange
(SE) level with partial waves l <7.
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Discussion and Conclusions

Direct and indirect effects

indirect effect direct effect total effect

’Natural’ colours symbolise molecule in its isolated, ground state, equilibrium geometry; the
blue colour indicates molecule in the optimized geometry of the cluster.

I Microhydration effects can be understood in terms of an indirect (change
to the molecule’s geometry) and direct (actual effect of the
hydrogen-bonding) contribution

I Calculations confirm the findings of Freitas et al.[5]:
. water acting as hydrogen donor stabilizes resonance, water acting as

acceptor destablizes it
. effect is approximately additive

I Effect of each H2O molecule depends weakly on the binding site
I Effect is different for different resonances in the system
I Full effect of polarization still needs to be understood
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I Effect of additional waters
is approximately additive

I Indirect effect is small and
similar for all clusters

I Effect is different for
different resonances

I For some clusters we see
destabilizations.

Letters (A, B, AE...) indicate attachment position of water molecule. Thy G1: thymine in

its equilibrium geometry. Thy G2 and Thy G3, thymine in the geometry it has in the

ABCDE and ACDEF clusters respectively.

Thy-(H2O)5

I DEA calculations [6] based on
resonance stabilization predict an
increase in H loss for Thy-(H2O)5

I Experiments for microhydrated
uracil /thymine [7] show
complete quenching of H loss

I Size of shift of two lowest π∗

resonances is similar to the
change in the HF orbital energies

I The σ∗ orbitals that should
describe the σ∗ resonances
involved in H loss change
significantly: they no longer
describe electronic density around
the N1 or N3 bonds

I The quenching observed
experimentally could be linked to
significant modification of the σ∗

rather than π∗ resonances
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I Resonances stabilized for both
clusters but by different amounts

I Larget resonances shift < 0.7 eV
I Indirect effect different for different

clusters but similar for both
resonances

I Direct effect destabilizes first
resonances and stabilizes second

I Both direct and indirect effects are
stronger in ACDEF cluster than in
ABCDE
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